Tamoxifen inhibits BK channels in chick cochlea without alterations in voltage-dependent activation.

نویسندگان

  • Mingjie Tong
  • R Keith Duncan
چکیده

Large-conductance, Ca(2+)-activated, and voltage-gated potassium channels (BK, BK(Ca), or Maxi-K) play an important role in electrical tuning in nonmammalian vertebrate hair cells. Systematic changes in tuning frequency along the tonotopic axis largely result from variations in BK channel kinetics, but the molecular changes underpinning these functional variations remain unknown. Auxiliary beta(1) have been implicated in low-frequency tuning at the cochlear apex because these subunits dramatically slow channel kinetics. Tamoxifen (Tx), a (xeno)estrogen compound known to activate BK channels through the beta-subunit, was used to test for the functional presence of beta(1). The hypotheses were that Tx would activate the majority of BK channels in hair cells from the cochlear apex due to the presence of beta(1) and that the level of activation would exhibit a tonotopic gradient following the expression profile of beta(1). Outside-out patches of BK channels were excised from tall hair cells along the apical half of the chicken basilar papilla. In low-density patches, single-channel conductance was reduced and the averaged open probability was unaffected by Tx. In high-density patches, the amplitude of ensemble-averaged BK current was inhibited, whereas half-activation potential and activation kinetics were unaffected by Tx. In both cases, no tonotopic Tx-dependent activation of channel activity was observed. Therefore, contrary to the hypotheses, electrophysiological assessment suggests that molecular mechanisms other than auxiliary beta-subunits are involved in generating a tonotopic distribution of BK channel kinetics and electric tuning in chick basilar papilla.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracellular Mg2+ Enhances the Function of Bk-Type Ca2+-Activated K+ Channels

BK channels modulate neurotransmitter release due to their activation by voltage and Ca(2+). Intracellular Mg(2+) also modulates BK channels in multiple ways with opposite effects on channel function. Previous single-channel studies have shown that Mg(2+) blocks the pore of BK channels in a voltage-dependent manner. We have confirmed this result by studying macroscopic currents of the mslo1 cha...

متن کامل

The antiestrogen tamoxifen activates BK channels and stimulates proliferation of MCF-7 breast cancer cells.

In the present study, we investigated the effect of the antiestrogen compound tamoxifen on BK channels by the use of the patch-clamp technique. The perfusion of 10 nM tamoxifen significantly increased the magnitude of a voltage-dependent K+ current by 22.6 +/- 10.6% (n = 23). The effect of tamoxifen was always obtained in the first minute, peaked at 5.9 +/- 2.2 min (n = 23), and was abolished b...

متن کامل

The effect of single cerebroside compounds on activation of BKCa channels.

We have previously shown that a mixture of cerebrosides obtained from dried tubers of herb Typhonium giganteum Engl. plays a neuroprotective role in the ischemic brain through its effect on activation of BK(Ca) channels. It is very curious to know whether a single pure cerebroside compound could activate the BK(Ca) channel as well. This study explored the possible effects of pure cerebroside co...

متن کامل

BK Channels Mediate Cholinergic Inhibition of High Frequency Cochlear Hair Cells

BACKGROUND Outer hair cells are the specialized sensory cells that empower the mammalian hearing organ, the cochlea, with its remarkable sensitivity and frequency selectivity. Sound-evoked receptor potentials in outer hair cells are shaped by both voltage-gated K(+) channels that control the membrane potential and also ligand-gated K(+) channels involved in the cholinergic efferent modulation o...

متن کامل

Contribution of BK Ca2+-activated K+ channels to auditory neurotransmission in the Guinea pig cochlea.

Large-conductance calcium-activated potassium (BK) channels are known to play a prominent role in the hair cell function of lower vertebrates where these channels determine electrical tuning and regulation of neurotransmitter release. Very little is known, by contrast, about the role of BK channels in the mammalian cochlea. In the current study, we perfused specific toxins in the guinea pig coc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 297 1  شماره 

صفحات  -

تاریخ انتشار 2009